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1 About this document

We describe the general concept of lens distortion as we understand it in the
context of 3DE4, and the two most important lens distortion models, one for
radial lenses and one for anamorphic lenses, including mathematical details and
modifications based on input from users.

1.1 License

The document may be shared and adapted under conditions of the Creative
Commons license CC BY-SA 3.0 as described in [1].

1.2 Current status

The document is under development. It is valid as of LDPK version 2.0.

Doc Vers. Scope Date Notes

1.4 public 2018-12-14 First public release

1.3 internal 2018-09-19 Finetuning notation

Bugfixes in reparametrization

1.2 internal 2018-07-09 Rescaled anamorphic model

1.1 internal 2018-06-22 Reparametrization

1.0 internal 2018-06-18 Coordinate systems; Extenders;

The two standard models of 3DE4
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2 Preliminaries

2.1 Basic concepts

In order to model lens distortion, we abstract from the real-world camera towards
an idealized camera. The lens distortion models we are looking for do not contain
any explicit time-dependency, and it does not care about chromatic effects. In
order to point out what we understand by lens distortion we shall define a couple
of terms in the following.

2.1.1 Physical filmback / imaging area

For a given point in time the output of a camera is an image, i.e. a mapping from a
rectangular region in R2 into some target space (usually, but not necessarily, color
space). We shall assume, that this image has a counterpart within the camera,
i.e. a rectangular region on an image sensor or a strip of celluloid. We call this
rectangle the physical filmback with width wfb,cm,phys and height hfb,cm,phys. The
index “cm” should remind us that these quantities are given in length units (be
it centimeter or inch) as opposed to pixels or dimensionless quantities.

2.1.2 Pixel aspect ratio and virtual filmback

Whenever an image is rasterized from / displayed on a rectangle with real world
length units, pixel aspect becomes an important quantity. For a digital imaging
system the definition is the following: Assume the image of a rectangular object
of size wcm × hcm without non-linear distortion is given in rasterized form with
pixel size wpx×hpx so that the edges of the object are parallel to the edges of the
rasterized image, then pixel aspect (ratio) is defined as

rpa =
wcm

hcm

hpx
wpx

(1)

In the “VFX Database” [2], the workflow for anamorphic images is shown. We
adopt the term virtual filmback for our purposes and write its size as

wfb,cm × hfb,cm (2)

The virtual filmback width for an anamorphic camera is the filmback as it would
be without pixel aspect, so that we have the relation

wfb,cm = wfb,cm,physrpa (3)

In 3DE4’s GUI, the camera / lens is described as a camera pyramid with size
wfb,cm × hfb,cm × fcm, where fcm is the focal length. If an image of size wpx × hpx
is loaded and associated to a lens, pixel aspect is calculated and displayed. It is
important to keep in mind that
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All lens distortion models in 3DE4 are based on the virtual filmback.

More precisely, the unit coordinates and the diagonally normalized coordi-
nates we define later in this document are derived from virtual filmback size.

The quantities (as they appear in 3DE4’s GUI) Filmback Width, Filmback
Height, Pixel Aspect, image width and image height fulfill the definition given
in equation (1). Since this is important, we should consider an example (see
Figure 1). Assume, an anamorphic camera has a physical filmback of 21.936 mm×
18.672 mm. After rasterization we have images of size 1828 px × 1556 px. Then
pixel aspect is 2.0. The virtual filmback width is 43.872 mm, and 3DE4 will
display

Filmback Width 43.872 mm
Filmback Height 18.672 mm
Film Aspect 2.353
Pixel Aspect 2.000
Resolution 1828× 1556

Whenever we write wfb,cm in this document, we shall refer to the virtual filmback
width, not the physical filmback width. Also, lens center offset in the context of
3DE4 (see next section) is defined with respect to the virtual filmback.

Figure 1: Numeric example, physical vs. virtual filmback

2.1.3 Lens Center

In a perfectly aligned optical system, all lenses are centered on the optical axis.
We shall call the intersection of this axis with the filmback the lens center. This
is again an idealized model, and experience shows that even slight displacements
of the lenses from the optical axis have an impact on lens distortion. At least one
of the models we present in this document does account for these displacements.
The important thing is that there must be a point on the filmback which remains
invariant under the lens distortion mapping (mathematically a fixed point), and
we will consider this point as lens center. In practice, as you will see below, we
will express our models by means of the difference vector between the filmback
center and the lens center, which we call lens center offset with symbols xlco,cm
and ylco,cm.
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2.1.4 Lens Distortion

In an ideal, linear camera, the relation between points in 3d-space and the corre-
sponding point on the filmback is a homography, i.e. straight lines in 3d-space are
mapped onto straight lines on the filmback. Lens distortion is a typically non-
linear mapping from the filmback (plus some margin) onto the filmback (plus
some other margin). This non-linearity results from the complex physics of real-
world lens systems. Our objective is to model lens distortion with only little
physical input, so that we can formulate it independently from the specific lens
system.

3 Lens distortion

3.1 Coordinates

Before constructing our lens distortion models we need to define the coordinate
systems involved. Starting from the virtual filmback with size wfb,cm×hfb,cm and
lens center offset (xlco,cm, ylco,cm) we shall derive the following two systems:

1. unit coordinates (index: “unit”). In these coordinates the lower left position
of the filmback has values (0,0), while the upper right position is (1,1).
We use these coordinates for implementing the data structures in 3DE4
used for dispatching tracking data. On one hand, unit coordinates are
more appropriate than length-unit coordinates, because they abstract from
the camera; images do not necessarily come from a camera (not even a
virtual one), so we prefer not to deal with length units. On the other hand,
unit coordinates are better than e.g. pixel coordinates, since the distortion
classes in 3DE4 have to work without recurse to image size (in pixel).
For this reason we choose unit coordinates for any API when dealing with
tracking data and lens distortion within 3DE4.

2. diagonally normalized coordinates (index “dn”) In these coordinates the
origin (0,0) coincides with the lens center, and the image diagonal has a
length of 2, i.e. the radius is 1. Additionally, we demand that the coordi-
nates are supposed to be isometric: A line segment of length distance ddn
in diagonally normalized coordinates corresponds to a distance dcm in vir-
tual filmback coordinates regardless of the line segment’s orientation. We
shall use these coordinates as base for our lens distortion models, because
it is quite natural to have the origin (0,0) as fixed point of the distortion
mapping.

The objective of this section is the following: Given a filmback and a lens center
offset

wfb,cm, hfb,cm, xlco,cm, ylco,cm (4)
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we would like to express diagonally normalized coordinates by unit coordinates
and vice versa, i.e. we are looking for a mapping

φ : (xunit, yunit) 7→ (xdn, ydn) (5)

This enables us to formulate lens distortion models easily in dn-coordinates on
one hand and an API for lens distortion classes in unit-coordinates on the other
hand. Given a model function

g : (xdn, ydn) 7→ (x′dn, y
′
dn) (6)

which maps a distorted point into its undistorted counterpart (denoted by the
prime), a lens distortion class will perform the following operation:

(x′unit, y
′
unit) = φ−1 ◦ g ◦ φ(xunit, yunit) (7)

First, let us define the radius of the filmback, i.e. the Euclidian distance from
filmback center to either corner.

rfb,cm =

√(wfb,cm

2

)2
+

(
hfb,cm

2

)2

(8)

If we define coordinates in length units in a way that the lower left corner of
the filmback is (0, 0), we can easily write down the relationship between length
coordinates and unit-coordinates:

xcm = xunitwfb,cm

ycm = yunithfb,cm (9)

Concerning diagonally normalized coordinates, in item 2 above we demand that
the origin coincides with lens center and that the diagonal distance is 2. This
leads us to the following relation:

xdn =
xcm − xlc,cm

rfb,cm

ydn =
ycm − ylc,cm

rfb,cm
(10)

where xlc,cm and ylc,cm are the lens center. Obviously, the lens center in length
coordinates is mapped to (0,0). Let us check the length of the diagonal. For
the upper right corner of the filmback we have the following position in dn-
coordinates:

xright,dn =
wfb,cm − xlc,cm

rfb,cm

ytop,dn =
hfb,cm − ylc,cm

rfb,cm
(11)
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and for the lower left corner:

xleft,dn =
−xlc,cm
rfb,cm

ybottom,dn =
−ylc,cm
rfb,cm

(12)

The Euclidian distance between these positions is√(
wfb,cm

rfb,cm

)2

+

(
hfb,cm
rfb,cm

)2

= 2 (13)

using definition (8). Finally, we express the lens center by lens center offset and
insert relations (9):

xdn =
xunitwfb,cm − xlco,cm

rfb,cm
− wfb,cm

2rfb,cm

ydn =
yunithfb,cm − ylco,cm

rfb,cm
− hfb,cm

2rfb,cm
(14)

For each given filmback wfb,cm, hfb,cm and lens center offset xlco,cm, ylco,cm we shall
call this (affine) mapping

(xdn, ydn) = φ(xunit, yunit) (15)

and it inverse mapping

(xunit, yunit) = φ−1(xdn, ydn). (16)

3.2 Lens distortion models

In this section we define what we understand by a distortion model in the context
of 3DE4. Essentially, a distortion model is a function which maps each point in
the filmback to some other point. Yet, a distortion model is not an automorphism
on the filmback, so instead of defining a model function exactly on the filmback
it makes more sense to define it as a mapping from a set P ⊂ R2 containing the
filmback to some other set Q ⊂ R2.

Let P and Q be (open, connected) subsets of R2, so that (0, 0) ∈ P and
(0, 0) ∈ Q. The model functions we are going to define map from P to Q and
usually depend on parameters, called the distortion parameters. A set of distor-
tion parameters c is a tuple (c0, c1, . . . , cn−1) of values, each from a parameter
domain Ci, i.e. ci ∈ Ci. The Ci can be e.g. an interval [a, b] ⊂ R, a set of integers
or Boolean values {0, 1}. This definition is pretty vague, and in fact there are
hardly any conditions for this parameter space. We now consider a mapping

g : P × C → Q (17)
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Figure 2: Filmback and lens center in various coordinate systems

For any given parameter set c ∈ C we define the function gc by

gc : P → Q : p 7→ g(p, c) (18)

We call g a distortion model if the following conditions are fulfilled:

1. Fixed point - (0, 0) is a fixed point of gc, i.e. gc(0, 0) = (0, 0). Since we
express gc in terms of dn-coordinates, (0,0) is the lens center, which remains
invariant under gc.

2. Default parameters - There is a parameter set cdefault ∈ C, so that gcdefault
is the identity map on P , i.e.

gcdefault = id|P (19)

We call cdefault a default parameter set of gc.

3. Invertibility - gc is invertible on P , i.e. there is a mapping

g−1c : Q→ P (20)

so that
g−1c ◦ gc = id|P (21)

By definition, the function gc maps distorted points into undistorted points.
We refer to gc as the model function of the distortion model. As a convention in
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this document we shall denote distorted points by (x, y) and undistorted points
by (x′, y′) so that all distortion model functions map like

(x′, y′) = gc(x, y) (22)

The three conditions above are the minimum requirements for our distortion
models. It should be mentioned that for a clean mathematical description we
would have to add more conditions, like e.g. continuity or differentiability, but
these conditions would not help us in getting a practical formulation of lens
distortion models, so we will omit this for now. In sections 3.5 and 3.7 we will
define the two lens distortion models most relevant in practice. As mentioned,
all models are defined in dn-coordinates, even if we omit the index “dn”.

3.3 Extenders

Some of the models used in 3DE4 are equipped with so-called extenders. At the
current state of development an extender is a linear mapping

he : R2 → R2 (23)

parametrized by tuples e = (e0, . . . , en−1) from some parameter space E, simi-
larly to the parameter space C of the model function. The conditions for model
functions also apply to extenders:

1. Fixed point - Since he is linear, it is clear that the fixed point condition
is fulfilled

he(0, 0) = (0, 0) (24)

2. Default parameters - There is a parameter set edefault ∈ E, so that hedefault
is the identity map on R2, i.e.

hedefault = id|R2 (25)

3. Invertibility - We demand that he is invertible, i.e. we can write1 he(x, y)
as a product of an invertible 2× 2-matrix He and a vector (x, y):

he(x, y) = He

[
x
y

]
h−1e (x, y) = H−1e

[
x
y

]
(26)

1Our formulation is not exact here. We do not distinguish between tuples (x, y) and vectors
[x, y]T , but the meaning should be clear.
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Given a distortion model g with parameter space C and an extender h with a
parameter space E (disjoint to C) the composition he ◦ gc is a model function as
well. The fixed point condition is fullfilled:

he ◦ gc(0, 0) = he(0, 0) = (0, 0) (27)

The composition is invertible:

(he ◦ gc)−1 = g−1c ◦ h−1e (28)

and if we unite E and C into a parameter space C ′ = E × C, we have a default
parameter set (edefault, cdefault) ∈ C ′ for which the composition is the identity:

hedefault ◦ gcdefault = id|R2 ◦ id|P = id|P (29)

Likewise, you can easily check that gc ◦ he|P is a model function for a parameter
space C × E.

In 3DE4’s GUI the term “extender”does not appear. We simply incorporate
the extender into the plain distortion model and present the united parameter
set in the GUI. In this document however, it makes sense to separate the plain
model and the extenders carefully.

3.4 Overview: Lens distortion models

In this document we define names for distortion models which describe the in-
gredients of the distortion model more precisely. Table 1 shows how these model
names relate to the distortion models in 3DE4. Parameters φbs, bbs and φmnt

refer to “Cylindric Direction”, “Cylindric Bending” and “Lens Rotation” which
are explained later in this document.

Table 1: Names of distortion models in this document vs. 3DE4’s GUI

GUI Document Spec. case

3DE4 Radial - Standard, Degree 4 Poly-4-Radial u, v, φbs, bbs = 0

3DE4 Radial - Standard, Degree 4 Poly-4-Radial-Decenter φbs, bbs = 0

3DE4 Radial - Standard, Degree 4 Poly-4-Radial-Decenter-Elliptic

3DE4 Anamorphic - Standard, Degree 4 Poly-4-Anamorphic sx, sy = 1, φmnt = 0

3DE4 Anamorphic - Standard, Degree 4 Poly-4-Anamorphic-Rpa-Sq φmnt = 0

3DE4 Anamorphic - Standard, Degree 4 Poly-4-Anamorphic-Rpa-Sq-Rot

3DE4 Anamorphic - Rescaled, Degree 4 Poly-4-Anamorphic-Rpa-Re-Sq-Rot

Whenever possible, we express our model functions by means of the Euclid-
ian distance of a point p = (x, y) from the lens center (0,0):

r =
√
x2 + y2 (30)
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3.5 The standard model for radially symmetric lenses

In photography optical systems usually consist of a number of radially symmetric
lenses lined up on the optical axis. An ideal system with perfectly aligned lenses
can be modelled by a polynomial with even exponents of e.g. degree four (Poly-
4-Radial),

x′ = x(1 + c2r
2 + c4r

4)

y′ = y(1 + c2r
2 + c4r

4). (31)

In practice the lenses can be slightly decentered or tilted with respect to this
axis, which is usually not desired. The radially symmetric standard model used
in 3DE4 is based on the distortion model developed for astronomy by Brown [3]
and Conrady [4]. The original model (up to order four) is given by the mapping

x′ = x(1 + c2r
2 + c4r

4) +
[
t1(r

2 + 2x2) + 2t2xy
]

(1 + t3r
2)

y′ = y(1 + c2r
2 + c4r

4) +
[
t2(r

2 + 2x2) + 2t1xy
]

(1 + t3r
2). (32)

with five parameters c2, c4, t1, t2, t3. This model takes into account that lenses
might be decentered. As you see this model is not linear in its parameters, since
it contains products of t1, t2 with t3. For 3DE4 we have modified this model by
introducing an additional parameter. Our model has six parameters c2, c4, u2,
v2, u4, v4 which are related to the original parameters by

u2 = t1 u4 = t3t1

v2 = t2 v4 = t3t2. (33)

From a physics point of view, the additional parameter is redundant, yet we
found it helpful to have linear dependency for estimating coefficients e.g. from
grid shots. The result is the following model (Poly-4-Radial-Decenter):

x′ = x(1 + c2r
2 + c4r

4) + (r2 + 2x2)(u2 + u4r
2) + 2xy(v2 + v4r

2)

y′ = y(1 + c2r
2 + c4r

4) + (r2 + 2y2)(v2 + v4r
2) + 2xy(u2 + u4r

2). (34)

which we will write as
(x′, y′) = grad,dec(x, y). (35)

This is a sub-model of 3DE4 Radial - Standard, Degree 4 used in 3DE4. The
parameter names are summarized in Table 2.

3.5.1 Extender: Beam Splitter

In 3DE4 the radially symmetric model is also used for stereo rigs. If the two
cameras in a stereo rig are placed side by side either camera can be modelled sep-
arately using the plain radial model defined in the previous section. In practice,
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Table 2: Parameters of model Poly-4-Radial-Decenter

Doc Code GUI Default

c2 c2 Distortion - Degree 2 0

u2 u2 U - Degree 2 0

v2 v2 V - Degree 2 0

c4 c4 Quartic Distortion - Degree 4 0

u4 u4 U - Degree 4 0

v4 v4 V - Degree 4 0

sometimes the interocular distance of the cameras is too small for arranging them
this way. In this case the two cameras are arranged by using a beam splitter (see
Figures 3 and 4).

Figure 3: Stereo rig with beam splitter, side view

Figure 4: Stereo rig with beam splitter, top view

Historically, there were grid shots for calibrating stereo cameras which could
not be handled by the plain radial model. This problem lead us to implementing
an extender in order to compensate for possible beam splitter artefacts. The
question is: If the beam splitter suffers from some kind of deformation for instance
due to exposure to heat on set, what mathematical function will describe this
deformation best?
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Imagine a flat disc made, exposed to heat on one side, but not on the other
side. The material will expand on the exposed side more than on the non-exposed
side, which leads to mechanical stress. The disc will bend to compensate for this
stress but in a way as to keep overall deformation energy minimal. This lead us
to the following extender function. We introduce two parameters named φbs and
bbs. Using the short hand notations

q =
√

1 + bbs

c = cosφbs

s = sinφbs (36)

the extender matrix reads

Hφbs,bbs =

[
c2q + s2

q
(q − 1

q
)cs

(q − 1
q
)cs c2

q
+ s2q

]
(37)

We will write this matrix as function

hφbs,bbs(x, y). (38)

It is easy to check that the eigenvectors of this matrix are [c, s] and [−s, c] with
eigenvalues q and 1/q, respectively. Geometrically this means that a circle is
deformed under Hφbs,bbs into an ellipsis of same area with axes [c, s] and [−s, c].
The extender matrix remains invariant under the mapping

q 7→ 1

q

φbs 7→ φbs +
π

2
(39)

which is approximately equivalent (for |bbs| � 1) to

bbs 7→ −bbs
φbs 7→ φbs + 90◦ (40)

which you can easily verify in 3DE4. Please note that this matrix is not purely
based on physics input. We have “symmetrized” it by introducing a factor√

1 + bbs (41)

for practical reasons. Without this factor we would have a symmetry which
involves focal length. We omit the details here, but in the end we decided to
decouple the symmetry of φbs, bbs from focal length.

Finally, we should clarify how the extender is applied. In a stereo rig with
beam splitter light ray directions are first distorted by the beam splitter and
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second by the lens system. Our model function has to remove distortion effects
in the opposite direction. If we write this down, we finally get our distortion
model Poly-4-Radial-Decenter-Elliptic

(x′, y′) = hφbs,bbs ◦ grad,dec(x, y) (42)

where grad,dec is the model function of model Poly-4-Radial-Decenter as defined in
(34). This is the eight-parameter model 3DE4 Radial - Standard, Degree 4 used in
3DE4. The parameter names added by the extender are given in Table 3.

Table 3: Additional parameters of model Poly-4-Radial-Decenter-Elliptic

Doc Code GUI Default

φbs phi bs Phi - Cylindric Direction 0◦

bbs b bs B - Cylindric Bending 0

Although this model is no longer linear in its coefficients it is still a polynomial
model. It does not make much sense to expand the composite expression into
powers of x and y, so we shall leave it in its compact form given above.

3.6 The polynomial approach for anamorphic lenses

In order to model the distortion of an anamorphic lens system, we can use a poly-
nomial approach as we did for the radially symmetric lens. Let gc be the model
function for a perfect anamorphic lens system. We examine the correctional part
of this model function:

d(x, y) = gc(x, y)− (x, y) (43)

Then for the components of d(x, y) we have the following symmetries:

dx(x, y) = −dx(−x, y)

dy(x, y) = dy(−x, y)

dx(x, y) = dx(x,−y)

dy(x, y) = −dy(x,−y) (44)

So, the x-component of the correctional part is an odd function in x but even in
y, while the y-component is an even function in x but odd in y. Our polynomial
model must reflect this symmetry, but it must also be formulated as broadly
as possible. These requirements lead to a sum of all bi-variate monomials with
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matching parity. Up to order six of the correctional term, this polynomial reads

x′ = x( 1 + a02y
2 + a04y

4 + a06y
6

+ a20x
2 + a22x

2y2 + a24x
2y4

+ a40x
4 + a42x

4y2

+ a60x
6)

(45)

and

y′ = y( 1 + b02y
2 + b04y

4 + b06y
6

+ b20x
2 + b22x

2y2 + b24x
2y4

+ b40x
4 + b42x

4y2

+ b60x
6)

(46)

where aij is the coefficient for monomial xxiyj for the x-component and bij for
monomial yxiyj for the y-component. More generally the polynomial up to order
n reads:

x′ = x
n∑

i=0
i even

n−i∑
j=0

j even

aijx
iyj

y′ = y

n∑
i=0

i even

n−i∑
j=0

j even

bijx
iyj (47)

with a00 = b00 = 1. In practice we re-formulated this in polar coordinates (based
on dn-coordinates):

r =
√
x2 + y2

φ = atan(y, x) (48)

where atan stands for the arctan inverse trigonometic extended to all four quad-
rants so that cosφ = x and sinφ = y. Using addition theorems for trigonometric
functions the polynomials (47) can be re-formulated as

x′ = x
n∑

i=0
i even

n∑
j=i

j even

c
(x)
ij r

j cos(iφ)

y′ = y

n∑
i=0

i even

n∑
j=i

j even

c
(y)
ij r

j cos(iφ) (49)
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with c
(x)
00 = c

(y)
00 = 1. The explicit relationship between a, b and c(x), c(y) is not

important here, we just need to trust (or prove) that both (47) and (49) are
equivalent in what they are doing. For degree up to six we have established this
relationship explicitly. Note, that these relations are symmetric with respect to
exchanging a↔ b and c(x) ↔ c(y).

a20 = c
(x)
02 + c

(x)
22 b20 = c

(y)
02 + c

(y)
22

a02 = c
(x)
02 − c

(x)
22 b02 = c

(y)
02 − c

(y)
22

a40 = c
(x)
04 + c

(x)
24 + c

(x)
44 b40 = c

(y)
04 + c

(y)
24 + c

(y)
44

a22 = 2c
(x)
04 − 6c

(x)
44 b22 = 2c

(y)
04 − 6c

(y)
44

a04 = c
(x)
04 − c

(x)
24 + c

(x)
44 b04 = c

(y)
04 − c

(y)
24 + c

(y)
44

a60 = c
(x)
06 + c

(x)
26 + c

(x)
46 + c

(x)
66 b60 = c

(y)
06 + c

(y)
26 + c

(y)
46 + c

(y)
66

a42 = 3c
(x)
06 + c

(x)
26 − 5c

(x)
46 − 15c

(x)
66 b42 = 3c

(y)
06 + c

(y)
26 − 5c

(y)
46 − 15c

(y)
66

a24 = 3c
(x)
06 − c

(x)
26 − 5c

(x)
46 + 15c

(x)
66 b24 = 3c

(y)
06 − c

(y)
26 − 5c

(y)
46 + 15c

(y)
66

a06 = c
(x)
06 − c

(x)
26 + c

(x)
46 − c

(x)
66 b06 = c

(y)
06 − c

(y)
26 + c

(y)
46 − c

(y)
66 (50)

We will need these relations later when we formulate the Jacobi-matrix of the
model function.

3.6.1 Extender: Anamorphic compression / Pixel aspect

When images from an anamorphic camera are imported into 3DE4, their pixel
aspect reflects the anamorphic squeeze introduced by the anamorphic lens. In
order to compensate for distortion, pixel aspect must be estimated precisely by
3DE4 parameter adjustment procedures. In this sense, it is a distortion parame-
ter similar to the parameters c(x) and c(y) in the polynomial model. One method
of incorporating the anamorphic compression into the model function would be
to allow values different from 1 for parameter c

(x)
00 , while leaving c

(y)
00 at 1. Yet

there are quite a few arguments against this method.

• In compositing, a common workflow is to undistort the footage, compose
it with rendered content and then re-distort it. As far as we understand
it, anamorphic distortion -but not the squeeze- is often a means of artistic
expression in movie-making. If the linear compression (of around 2.0) was
part of the model function, the rendered content would be squeezed when
the composed images are re-distorted, which is not what you want.

• Let us assume, pixel aspect as well as distortion data are encoded in the
image files coming from the camera. Even if software for rendering, com-
positing or any kind of editing does not have the means for dealing with
lens distortion, it is still able to display images more or less correctly, as
long as it has access to pixel aspect encoded in the file.

16



3DE4 Lens Distortion

Given this argumentation we could completely separate pixel aspect from our
distortion model, however, experience shows that we cannot do this. One reason
is that the model has to remain usable, even if the image sequence is subject to
lens breathing as a result of focus pull or zoom. For this reason we define the
following extenders, which allow squeeze in x- and y-direction:

S(x)
q =

[
q 0
0 1

]
S(y)
q =

[
1 0
0 q

]
(51)

In order to write the extenders as functions we define

sqxq : (x, y) 7→ (qx, y)

sqyq : (x, y) 7→ (x, qy) (52)

In practice we use these extenders for modelling compression effects of the anamor-
phic lens. We split this compression in two parts:

• A large time-independent squeeze in x-direction, which we describe as
pixel aspect. Values are often around 2.0, but other squeeze ratios are
known as well.

• A small, often time-dependent deformation which acts independently in
x- and in y-direction. More precisely, there is a dependency, but it is highly
non-trivial. “small” means, we describe this deformation by squeezing pa-
rameters which are close to 1. By these parameters we model effects like
lens breathing.

Putting this back together again, we expect that the anamorphic model function
contains an expression:

sqxsx ◦ sqysy ◦ sqxrpa (53)

or alternatively, since all these operations commute:

sqysy ◦ sqxsxrpa , (54)

with two new squeeze parameters sx and sy, both time-dependent and near 1.

3.7 The standard model for anamorphic lenses

The standard model for anamorphic lenses in 3DE4 is based on (49) with cor-
rection terms up to order four. We shall denote the polynomial by ganam in this
section (also Poly-4-Anamorphic). The pure distortional part (with ganam split into
components ganam,x and ganam,y) reads
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ganam,x(x, y) = x(1 + c
(x)
02 r

2 + c
(x)
04 r

4

+ c
(x)
22 r

2 cos 2φ + c
(x)
24 r

4 cos 2φ

+ c
(x)
44 r

4 cos 4φ)

ganam,y(x, y) = y(1 + c
(y)
02 r

2 + c
(y)
04 r

4

+ c
(y)
22 r

2 cos 2φ + c
(y)
24 r

4 cos 2φ

+ c
(y)
44 r

4 cos 4φ) (55)

Additionally we have a squeeze-x extender and a squeeze-y extender with
values sx and sy for dealing with lens breathing. As mentioned, this construc-
tion allows us to consider pixel aspect constant over time and translocate time-
dependent lens breathing effects into sqxsx and sqysy which in practice will be
close to identity.

Finally we get our model function for Poly-4-Anamorphic-Rpa-Sq:

(x′, y′) = sqysy ◦ sqxsxrpa ◦ ganam ◦ sqx−1rpa(x, y) (56)

The model has twelve parameters which relate to 3DE4’s GUI representation as
shown in Table 4.

Please note, that for the default parameter set (0, . . . , 0, sx = 1, sy = 1) the
model function is the identity regardless of the value for rpa.

We have been nudged by users to provide the parameter sy for the following
reason: In sequences with constant focal length and lens breathing due to focus
pull, users prefer to consider focal length as static while lens breathing is modelled
by the time-dependent distortion model parameters sx and sy.

In order to motivate this form we should describe in words what is hap-
pening here. As mentioned, our model function maps dn-coordinates onto dn-
coordinates. In principle, dn-coordinates are nothing else but a uniformly scaled
version of virtual filmback coordinates. The rightmost term

sqx−1rpa (57)

transforms (x, y) into (diagonally normalized) physical filmback coordinates, i.e.
we can imagine sqx−1rpa(x, y) as a point on the camera sensor. The left hand side

sqysy ◦ sqxsxrpa ◦ ganam (58)

describes the effect of the anamorphic lens, including the large squeeze (e.g. by
2.0). We shall see in section 3.7.1 that it is important to clearly separate the
effect of the anamorphic lens from the squeezing transform on the filmback.

Yet, we have to motivate the left hand side (58) of our model function (56). It
is not a-priori clear, that sqxsx and sqysy have to be applied after ganam. Without
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having investigated this in detail we think that applying them before (i.e. on the
right hand side of) ganam would lead to a different, but equivalent lens distortion
model. The reason for us to place the squeezes on the left hand side (i.e. on the
“undistorted side”) is the following: There is an ambiguity between parameters
sx, sy and focal length f . The transformation

sy 7→ qsy

sx 7→ qsx

f 7→ qf (59)

for positive q will leave the camera model invariant. This ambiguity would also
be present if the squeezes were applied on the right hand side, but in this case
mapping all three parameters due to this ambiguity would only work along with
some complicated transformation of the coefficients in ganam, which is impossible
to handle for the user.

Once we have decided to apply sqxsx on the left hand side, we have to do the
same with pixel aspect ratio since we would like to consider sx, sy and rpa as the
dynamic and the static part of the overall compression of the anamorphic lens,
in order to model lens breathing. The bottom line is:

• We clearly have to identify in our model which part corresponds to the
anamorphic lens and which part is just rescaling on the filmback side.

• The squeezes sqxsx and sqysy must be applied on the left hand side of ganam
in order to avoid weird ambiguities.

• Pixel aspect must be applied along with sqxsx so that we can split the
entire dynamic compression into a dynamic part near 1.0 and a static part
encoded in rpa.

The model does not compensate for lens decentering, and up to now this has not
been requested by users. An extension for decentering as for the radial model
would of course be possible, but it is not clear what kind of parameters would
need to be added.

3.7.1 Extender: Rotation

Historically, when we implemented the model Poly-4-Anamorphic-Rpa-Sq and even
another model Poly-6-Anamorphic/3DE4 Anamorphic, Degree 6, it turned out that
there still was a considerable amount of gridshots we could not handle with any
of these models. We then got reports from users that they were using camera
bodies, the anamorphic lens was attached to and aligned “by hand”, without
e.g. bayonet lock. Clearly, our models Poly-4-Anamorphic-Rpa-Sq and Poly-6-
Anamorphic would fail since the symmetry assumptions (44) the models are based
on are not fulfilled.
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Table 4: The parameters of model Poly-4-Anamorphic-Rpa-Sq

Doc Code GUI Default

c
(x)
02 cx02 Cx02 - Degree 2 0

c
(y)
02 cy02 Cy02 - Degree 2 0

c
(x)
22 cx22 Cx22 - Degree 2 0

c
(y)
22 cy22 Cy22 - Degree 2 0

c
(x)
04 cx04 Cx04 - Degree 4 0

c
(y)
04 cy04 Cy04 - Degree 4 0

c
(x)
24 cx24 Cx24 - Degree 4 0

c
(y)
24 cy24 Cy24 - Degree 4 0

c
(x)
44 cx44 Cx44 - Degree 4 0

c
(y)
44 cy44 Cy44 - Degree 4 0

sx sx Squeeze-X 1

sy sy Squeeze-Y 1

In order to address this problem we have introduced an extender which rotates
the entire anamorphic lens around the optical axis. The matrix for this extender
is a simple rotation by an angle φmnt (where the index stands for “mount” or
“mounted”):

Rφmnt =

[
cosφmnt − sinφmnt

sinφmnt cosφmnt

]
(60)

We shall write this as a function rotφmnt . Since in the previous section we split
our model function (56) into a lens term and the filmback squeeze term, we
can now easily model the effect of a rotated lens and get our final model Poly-4-
Anamorphic-Rpa-Sq-Rot which corresponds to model 3DE4 Anamorphic - Standard,
Degree 4 in 3DE4:

(x′, y′) = rotφmnt ◦ sqysy ◦ sqxsxrpa ◦ ganam ◦ rot−1φmnt
◦ sqx−1rpa(x, y) (61)

Table 5 shows the additional parameter due to the rotation extender. In practice,
in case camera bodies and lenses with manual mount are used, we have found
values ranging from −2◦ to +2◦ in support projects from users.

Table 5: Additional parameter of model Poly-4-Anamorphic-Rpa-Sq-Rot

Doc Code GUI Default

φmnt phi mnt Lens Rotation 0◦
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3.7.2 Extender: Rescaling

In this section we will extend the model Poly-4-Anamorphic-Rpa-Sq-Rot by an
extender which again is based on user input. The drawback of working with
anamorphic footage is clearly that not all software allows to specify pixel aspect
for an uncompressed representation of the images.

For this reason it has become fashion to unsqueeze the footage by some well-
determined factor, usually pixel aspect ratio. We shall call images handled this
way “rescaled” images. Yet, in presence of non-zero lens rotation as modelled in
the previous section, pixel aspect ratio is no longer a well-defined number2.

In our standard model Poly-4-Anamorphic-Rpa-Sq-Rot we used pixel aspect
(along with sx and sy) in order to describe the compression effect of the anamor-
phic lens, but this method fails for rescaled images: the anamorphic lens does not
squeeze along the x-axis because of lens rotation, yet the user-rescaling is done
exactly along the x-axis.

In practice, the user sets pixel aspect ratio to 1, due to the rescaling, which
means that our model (61) will fail. Therefore we introduce an extender sqxsrscl
and add it to our lens rotation model. In the following expression we have
merged all squeeze-x terms into a single function. The result is the model Poly-
4-Anamorphic-Rpa-Re-Sq-Rot which in 3DE4’s GUI is called 3DE4 Anamorphic -
Rescaled, Degree 4:

(x′, y′) = rotφmnt ◦ sqysy ◦ sqxsxrpasrscl ◦ ganam ◦ rot−1φmnt
◦ sqx−1rpasrscl(x, y)

(62)

Compared to the rotated lens model we have one additional parameter srscl as in
Table 6.

Table 6: Additional parameter of model Poly-4-Anamorphic-Rpa-Re-Sq-Rot

Doc Code GUI Default

srscl s rscl Rescale 1

4 Jacobian

In this section we present the Jacobi-matrices of our lens distortion models. We
use greek indices for addressing components in two dimensions. These indices
can assume symbolic values ’x’ and ’y’ for x- and y-component. Summing over
double indices is implied (sum convention for covariant expressions). Given a

2We have not investigated this in detail, but we assume that pixel aspect can be described
by a symmetric matrix in case of lens rotation.
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bi-variate mapping g(p), p = (x, y), from R2 to R2, the Jacobi-matrix is defined
as

Jµν(p) =
∂

∂pν
gµ(p). (63)

Since the lens distortion models are equipped with extenders, we should work
out, how the Jacobian is altered by these extenders. Let us consider a model
function like

g = a ◦ ĝ ◦ b (64)

where a and b are linear functions. As mentioned before, the extenders can be
represented as matrices A and B. We consider a model function, composed from
a function ĝ with Jacobian Ĵ .

gµ(p) = Aµσĝσ(Bp) (65)

We are interested in

Jµν(p) =
∂

∂pν
Aµσĝσ(Bp). (66)

We extract the constant matrix and apply the chain rule:

Jµν(p) = Aµσ
∂

∂pν
ĝσ(Bp)

= Aµσ
∂

∂qτ

∣∣∣∣
q=Bp

ĝσ(q)Bτν

= AµσĴστ (Bp)Bτν (67)

Or simply
J(p) = AĴ(Bp)B (68)

Hence, for our composite model functions it is sufficient to consider the non-linear
part. In the following sections we shall denote the Jacobian of the non-linear
component by Ĵ(x, y) and the resulting Jacobian including extenders by J(x, y).
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4.1 The radial model

The Jacobian for the radial model is easily obtained by deriving (34) with
respect to x and y:

Ĵxx(x, y) = 1 + c2(y
2 + 3x2) + c4(y

2 + 5x2)r2

+ 6u2x+ u4(8xy
2 + 12x3) + 2v2y + v4(2y

3 + 6x2y)

Ĵxy(x, y) = 2c2xy + 4c4xyr
2

+ 2u2y + u4(8x
2y + 4y3) + 2v2x+ v4(2x

3 + 6xy2)

Ĵyx(x, y) = 2c2xy + 4c4xyr
2

+ 2u2y + u4(6x
2y + 2y3) + 2v2x+ v4(4x

3 + 8xy2)

Ĵyy(x, y) = 1 + c2(x
2 + 3y2) + c4(x

2 + 5y2)r2

+ 6v2y + v4(8x
2y + 12y3) + 2u2x+ u4(2x

3 + 6xy2). (69)

With beam splitter extender (37) we have:

J(x, y) = Hφ,bĴ(x, y) (70)

4.2 The anamorphic model

The non-linear part of the anamorphic standard model is given by the model
function Poly-4-Anamorphic in (55). Starting from the Cartesian representation
(47) we derive with respect to x and y. The result is:

Ĵxx(x, y) = 1 + 3a20x
2 + a02y

2 + 5a40x
4 + 3a22x

2y2 + a04y
4

Ĵxy(x, y) = 2a02xy + 4a04xy
3 + 2a22x

3y

Ĵyx(x, y) = 2b20xy + 4b40x
3y + 2b22xy

3

Ĵyy(x, y) = 1 + 3b02y
2 + b20x

2 + 5b04y
4 + 3b22x

2y2 + b40x
4 (71)

We have already established the relationship between aij, bij and c(x), c(y) in
(50) so this is the final result for the non-linear part. The Jacobian for the
anamorphic model Poly-4-Anamorphic-Rpa-Sq without rotation reads:

J(x, y) = S(y)
sy S

(x)
sxrpa Ĵ(x, y)S(x)

rpa
−1 (72)

For the anamorphic model Poly-4-Anamorphic-Rpa-Sq-Rot as used in 3DE4 we
get:

J(x, y) = RφmntS
(y)
sy S

(x)
sxrpa Ĵ(x, y)R−1φmnt

S(x)
rpa
−1 (73)

With additional rescaling due to Poly-4-Anamorphic-Rpa-Re-Sq-Rot we get:

J(x, y) = RφmntS
(y)
sy S

(x)
sxrpasrscl

Ĵ(x, y)R−1φmnt
S(x)
rpasrscl

−1 (74)
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5 Reparametrization

5.1 Subimage

By reparametrization we understand the following: Consider a filmback, a lens
center offset and a model function gc defined on this filmback. Now, for some rea-
son, somewhere in the production pipeline a rectangular sub-area of this filmback
is used instead of the original one. For instance, the original footage was recorded
in open-gate size, but then for compositing and final rendering it is reduced to
broadcast size.

The question is: how can we avoid re-estimating the distortion parameters
for the altered filmback and lens center offset? How can we calculate the new
distortion coefficients from the original ones? We shall investigate this in this
section.

Figure 5: New and original filmback

First of all, let us recall our general expression for applying a model function
gc to unit coordinates (7)

(x′unit, y
′
unit) = φ−1 ◦ gc ◦ φ(xunit, yunit) (75)

where gc is the model function with parameters c and φ maps unit- to dn-
coordinates as in (15). We will now map all numbers and functions to new
numbers and functions corresponding to the new filmback. The new filmback
and lens center offset is (see blue graphics in Figure 5)

w̃fb,cm, h̃fb,cm, x̃lco,cm, ỹlco,cm (76)
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The radius for this filmback is written as r̃fb,cm. We will have new unit coordinates
and new diagonally normalized coordinates:

x̃unit, ỹunit, x̃dn, ỹdn (77)

For the new filmback the undistortion mapping reads:

(x̃′unit, ỹ
′
unit) = φ̃−1 ◦ gc̃ ◦ φ̃(x̃unit, ỹunit) (78)

which means, we would like to use the same distortion model g but we will get
new parameters c̃. Please note, that we now map unit to dn-coordinates by a
function φ̃ which relies on the new filmback data.

Our method is to replace all expressions in (75) by tilde expressions except
for gc. Then by comparing to (78) we will see how to obtain gc̃ from gc. From
Figure 5 we can extract the following relations:

∆x = xlco,cm − x̃lco,cm +
1

2
(wfb,cm − w̃fb,cm)

∆y = ylco,cm − ỹlco,cm +
1

2
(hfb,cm − h̃fb,cm) (79)

Using ∆x,∆y we can establish the relationship between xunit, yunit and x̃unit, ỹunit.

xunit =
1

wfb,cm

(∆x+ x̃unitw̃fb,cm)

yunit =
1

hfb,cm
(∆y + ỹunith̃fb,cm) (80)

If we express φ(xunit, yunit) by means of these relations (do this as exercise), we
get:

φx(xunit, yunit) =
x̃unitw̃fb,cm − x̃lco,cm

rfb,cm
− w̃fb,cm

2rfb,cm

φy(xunit, yunit) =
ỹunith̃fb,cm − ỹlco,cm

rfb,cm
− h̃fb,cm

2rfb,cm
(81)

which means (this is important):

φ(xunit, yunit) = ρφ̃(x̃unit, ỹunit), (82)

where we have defined:

ρ =
r̃fb,cm
rfb,cm

. (83)

Now let us transform equation (75). This step is easier if we apply φ to both
sides:

φ(x′unit, y
′
unit) = gc ◦ φ(xunit, yunit) (84)
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We apply (82) and get

ρφ̃(x̃′unit, ỹ
′
unit) = gc(ρφ̃(x̃unit, ỹunit)) (85)

We move the factor ρ to the other side and apply φ̃−1 to both sides:

(x̃′unit, ỹ
′
unit) = φ̃−1(ρ−1gc(ρφ̃(x̃unit, ỹunit))) (86)

By comparing to (78) we now easily see that

gc̃(x̃dn, ỹdn) = ρ−1gc(ρx̃dn, ρỹdn) (87)

We can now establish the relationship between c̃ and c separately for each lens
distortion model.

5.1.1 Extenders

Assume, a model function gc has the form a ◦ ĝc ◦ b, where a and b are extenders.
We have derived equation (87) for ĝc, now we show that it works for a ◦ ĝc ◦ b as
well:

gc̃(x̃dn, ỹdn) = a(ĝc̃(b(x̃dn, ỹdn)))

= a(ρ−1ĝc(ρb(x̃dn, ỹdn))) (88)

Since a and b are linear functions, we can exchange the factors ρ−1 and ρ with a
and b. Then we get:

gc̃(x̃dn, ỹdn) = ρ−1a(ĝc(b(ρx̃dn, ρỹdn)))

= ρ−1a ◦ ĝc ◦ b(ρx̃dn, ρỹdn)

= ρ−1gc(ρx̃dn, ρỹdn). (89)

This means, extenders and their parameters remain unchanged under reparametriza-
tion. Only the non-linear function ĝc is affected. This will simplify reparametriza-
tion considerably.

5.1.2 The radial model

As an exercise for warming up we reparametrize the simple model Poly-4-Radial

x′ = x(1 + c2r
2 + c4r

4)

y′ = y(1 + c2r
2 + c4r

4). (90)

Again, for the sake of simplicity, we omit the index “dn”. All x and y are
understood in dn-coordinates in this section. Equation (87) for this model is

x̃(1 + c̃2r̃
2 + c̃4r̃

4) = ρ−1ρx̃(1 + c2ρ
2r̃2 + c4ρ

4r̃4)

ỹ(1 + c̃2r̃
2 + c̃4r̃

4) = ρ−1ρỹ(1 + c2ρ
2r̃2 + c4ρ

4r̃4) (91)
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and hence by comparison of coefficients

c̃2 = c2ρ
2

c̃4 = c4ρ
4. (92)

For the decentered model Poly-4-Radial-Decenter we can examine the two decen-
tering terms separately:

(r̃2 + 2x̃2)(ũ2 + ũ4r̃
2) = ρ−1(ρ2r̃2 + 2ρ2x̃2)(u2 + u4ρ

2r̃2)

(r̃2 + 2ỹ2)(ṽ2 + ṽ4r̃
2) = ρ−1(ρ2r̃2 + 2ρ2ỹ2)(v2 + v4ρ

2r̃2) (93)

and

2x̃ỹ(ṽ2 + ṽ4r̃
2) = ρ−12ρ2x̃ỹ(v2 + v4ρ

2r̃2)

2x̃ỹ(ũ2 + ũ4r̃
2) = ρ−12ρ2x̃ỹ(u2 + u4ρ

2r̃2) (94)

which leads to the result:

ũ2 = u2ρ ṽ2 = v2ρ

ũ4 = u4ρ
3 ṽ4 = v4ρ

3 (95)

In the previous section we have shown that extenders remain invariant under
reparametrization. Hence, for our beam splitter model Poly-4-Radial-Decenter-
Elliptic, the beam splitter parameters are unchanged:

φ̃bs = φbs b̃bs = bbs (96)

5.1.3 The anamorphic model

For the anamorphic models, reparametrization is similar as for the radial mod-
els. We apply our method to model Poly-4-Anamorphic. All other models are
constructed by extenders to this model. The easiest way is to apply (87) to the
general form for anamorphic lenses in polar coordinates (49):

x̃
n∑

i=0
i even

n∑
j=i

j even

c̃
(x)
ij r̃

j cos(iφ) = ρ−1ρx̃
n∑

i=0
i even

n∑
j=i

j even

c
(x)
ij ρ

j r̃j cos(iφ)

ỹ
n∑

i=0
i even

n∑
j=i

j even

c̃
(y)
ij r̃

j cos(iφ) = ρ−1ρỹ
n∑

i=0
i even

n∑
j=i

j even

c
(y)
ij ρ

j r̃j cos(iφ) (97)

The angular factors are not affected, since φ = atan(y, x) = atan(ρy, ρx). The
result is:

c̃
(x)
ij = c

(x)
ij ρ

j

c̃
(y)
ij = c

(y)
ij ρ

j (98)
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or, for our case Poly-4-Anamorphic-Rpa-Sq:

c̃
(x)
02 = c

(x)
02 ρ

2 c̃
(x)
22 = c

(x)
22 ρ

2

c̃
(x)
04 = c

(x)
04 ρ

4 c̃
(x)
24 = c

(x)
24 ρ

4 c̃
(x)
44 = c

(x)
44 ρ

4

c̃
(y)
02 = c

(y)
02 ρ

2 c̃
(y)
22 = c

(y)
22 ρ

2

c̃
(y)
04 = c

(y)
04 ρ

4 c̃
(y)
24 = c

(y)
24 ρ

4 c̃
(y)
44 = c

(y)
44 ρ

4

s̃x = sx s̃y = sy

φ̃mnt = φmnt (99)

The parameters sx, sy and φmnt are not affected, since they only occur in exten-
ders.

5.2 Flipped image

Reparametrization is not only relevant for picking a subimage, as we did in the
previous sections. In practice, at some point in the pipeline images might be
flipped horizontally or vertically, and we would like to see how this affects lens
distortion. Given an image which maps from (xunit, yunit) to its target space, we
define the horizontal and the vertical reflector by

rflx : (xunit, yunit) 7→ (1− xunit, yunit)
rfly : (xunit, yunit) 7→ (xunit, 1− yunit) (100)

Reflectors and their inverse are the same:

rflx−1 = rflx

rfly−1 = rfly. (101)

We will also need negation functions like

negx : (x, y) 7→ (−x, y)

negy : (x, y) 7→ (x,−y) (102)

Starting from a model function in unit coordinates

(x′unit, y
′
unit) = φ−1 ◦ gc ◦ φ(xunit, yunit) (103)

the question is: How do we have to modify gc and φ if we flip the image? We
will get new parameters c̃ and a new coordinate mapping φ̃. As an example we
consider horizontal flipping. The filmback size remains invariant:

w̃fb,cm = wfb,cm h̃fb,cm = hfb,cm (104)
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Lens center offset is transformed like

x̃lco,cm = −xlco,cm ỹlco,cm = ylco,cm (105)

For vertical flipping it would be

x̃lco,cm = xlco,cm ỹlco,cm = −ylco,cm, (106)

but let us go ahead with the horizontal case. Flipping the image now leads to
the equation

(x′unit, y
′
unit) = rflx−1 ◦ φ̃−1 ◦ gc̃ ◦ φ̃ ◦ rflx(xunit, yunit) (107)

First we establish the relationship between φ and φ̃.

[φ̃ ◦ rflx(xunit, yunit)]x =
(1− xunit)w̃fb,cm − x̃lco,cm

r̃fb,cm
− w̃fb,cm

2r̃fb,cm

[φ̃ ◦ rflx(xunit, yunit)]y =
yunith̃fb,cm − ỹlco,cm

r̃fb,cm
− h̃fb,cm

2r̃fb,cm
(108)

We replace the tilde expressions by the original expressions and simplify:

[. . .]x =
−xunitwfb,cm + xlco,cm

rfb,cm
+
wfb,cm

2rfb,cm
= −[φ(xunit, yunit)]x

[. . .]y =
yunithfb,cm − ylco,cm

rfb,cm
− hfb,cm

2rfb,cm
= [φ(xunit, yunit)]y (109)

We insert these expressions in (107) and get

(x′unit, y
′
unit) = φ−1 ◦ negx ◦ gc̃ ◦ negx ◦ φ(xunit, yunit) (110)

Similar to reparametrizing for subimages, we compare this expression to (103),
which leads us to

gc = negx ◦ gc̃ ◦ negx (111)

for horizontal flipping and of course

gc = negy ◦ gc̃ ◦ negy (112)

for vertical flipping. We can now apply these two equations for each model
function explicitly and get the new parameters c̃.
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5.2.1 The radial model

Let us begin with model Poly-4-Radial in dn-coordinates. Again, we omit the
index “dn”.

x′ = x(1 + c2r
2 + c4r

4)

y′ = y(1 + c2r
2 + c4r

4). (113)

Since (x, y) 7→ r2 = x2 +y2 is invariant under negx, equation (112) for this model
is

x(1 + c2r
2 + c4r

4) = (−1)[−x(1 + c̃2r
2 + c̃4r

4)]

y(1 + c2r
2 + c4r

4) = y(1 + c̃2r
2 + c̃4r

4) (114)

which simply means, the coefficients remain invariant under flipping, which is
intuitively clear for radially symmetric lenses.

c̃2 = c2 c̃4 = c4. (115)

For the decentered model Poly-4-Radial-Decenter we can examine the two decen-
tering terms separately:

(r2 + 2x2)(u2 + u4r
2) = −(r2 + 2x2)(ũ2 + ũ4r

2)

(r2 + 2y2)(v2 + v4r
2) = (r2 + 2y2)(ṽ2 + ṽ4r

2) (116)

and

2xy(v2 + v4r
2) = −2(−x)y(ṽ2 + ṽ4r

2)

2xy(u2 + u4r
2) = 2(−x)y(ũ2 + ũ4r

2) (117)

In the case of horizontal flipping, these four equations are fulfilled for

ũ2 = −u2 ṽ2 = v2

ũ4 = −u4 ṽ4 = v4 (118)

For vertical flipping, the procedure is the same. The result is

ũ2 = u2 ṽ2 = −v2
ũ4 = u4 ṽ4 = −v4 (119)

Finally, we should have a look at the beam splitter extender. Equation (112)
for model Poly-4-Radial-Decenter-Elliptic reads:

hφbs,bbs ◦ grad,dec,c = negx ◦ hφ̃bs,b̃bs ◦ grad,dec,c̃ ◦ negx (120)
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The plan is to find modified parameters φ̃bs and b̃bs so that we can exchange h
and negx:

hφbs,bbs ◦ negx = negx ◦ hφ̃bs,b̃bs (121)

which will make (120) equivalent to

grad,dec,c = negx ◦ grad,dec,c̃ ◦ negx (122)

which we have already solved by computing parameters c̃ from c. In order to
solve (121), let us have a look at the matrix representation as in (37). For our
mapped quantities φ̃bs and b̃bs we use the short hand notations

q̃ =

√
1 + b̃bs

c̃ = cos φ̃bs

s̃ = sin φ̃bs (123)

Then the right hand side of (121) is[
−1 0
0 1

][
c̃2q̃ + s̃2

q̃
(q̃ − 1

q̃
)c̃s̃

(q̃ − 1
q̃
)c̃s̃ c̃2

q̃
+ s̃2q̃

]
=

[
−c̃2q̃ − s̃2

q̃
−(q̃ − 1

q̃
)c̃s̃

(q̃ − 1
q̃
)c̃s̃ c̃2

q̃
+ s̃2q̃

]
(124)

For the left hand side of (121) we have[
c2q + s2

q
(q − 1

q
)cs

(q − 1
q
)cs c2

q
+ s2q

] [
−1 0
0 1

]
=

[
−c2q − s2

q
(q − 1

q
)cs

−(q − 1
q
)cs c2

q
+ s2q

]
(125)

These two matrices are equal if

c̃ = c

s̃ = −s
q̃ = q (126)

which means

φ̃bs = −φbs b̃bs = bbs (127)

For the vertical flip the procedure is similar and the result is the same.

5.2.2 The anamorphic model

In order to map the anamorphic models we should recall how we defined our
polar coordinates:

r =
√
x2 + y2 φ = atan(y, x) (128)
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r remains invariant when (x, y) are mapped by negx. For φ we have

atan(y,−x) = π − atan(y, x) (129)

so φ is modified but cos(iφ) remains invariant, since i is even. For the vertical
flip we have

atan(−y, x) = −atan(y, x) (130)

which also modifies φ but leaves cos(iφ) invariant. Hence, for the plain anamor-
phic model Poly-4-Anamorphic, equation (112) reads

x
n∑

i=0
i even

n∑
j=i

j even

c
(x)
ij r

j cos(iφ) = −(−x)
n∑

i=0
i even

n∑
j=i

j even

c̃
(x)
ij r

j cos(iφ)

y

n∑
i=0

i even

n∑
j=i

j even

c
(y)
ij r

j cos(iφ) = y

n∑
i=0

i even

n∑
j=i

j even

c̃
(y)
ij r

j cos(iφ) (131)

which simply means, the coefficients are invariant under the horizontal as well as
unter vertical flipping:

c̃
(x)
ij = c

(x)
ij c̃

(y)
ij = c

(y)
ij (132)

For the model Poly-4-Anamorphic-Rpa-Sq we have

sqysy ◦sqxsxrpa ◦ganam ◦sqx−1rpa = negx◦sqys̃y ◦sqxs̃xrpa ◦ganam ◦sqx−1rpa ◦negx (133)

It is easy to see that negx commutes with all squeeze extenders, since all matrices
involved are diagonal. Therefore we have

= sqys̃y ◦ sqxs̃xrpa ◦ negx ◦ ganam ◦ negx ◦ sqx−1rpa (134)

and since we have already shown that ganam is invariant under negx:

= sqys̃y ◦ sqxs̃xrpa ◦ ganam ◦ sqx−1rpa (135)

and hence

s̃x = sx s̃y = sy (136)

for both the horizontal and the vertical flip. Finally we have a look at the rotation
extender which is required for model Poly-4-Anamorphic-Rpa-Sq-Rot. From the
matrix representations of negx and rotφmnt we have[

−1 0
0 1

] [
cosφmnt − sinφmnt

sinφmnt cosφmnt

]
=

[
cos φ̃mnt sin φ̃mnt

− sin φ̃mnt cos φ̃mnt

] [
−1 0
0 1

]
(137)

32



3DE4 Lens Distortion

Since sinφmnt is odd and cosφmnt is even, the rotation angle is mapped according
to

φ̃mnt = −φmnt (138)

for both the horizontal and the vertical flip.

6 Appendix

6.1 Polar coordinates and Cartesian coordinates

Let us have a closer look at the two representations (47) and (49) of the anamor-
phic polynomial. In order to calculate the Jacobi-matrix we have to expand the
polar coordinate representation in powers of x and y. First of all, we can express
the cosine functions with arguments iφ, i even, by Chebyshev-polynomials of
first kind:

cos iφ = Ti(cosφ) =
i∑

k=0
k even

tik cosk φ. (139)

If we insert this in (49) we get products of powers of r and cosine, which we can
re-formulate in terms of x and y:

rj cosk φ = xk(r2)
1
2
(j−k) = xk

j−k∑
l=0

l even

(1
2
(j − k)

1
2
l

)
xlyj−k−l (140)

which leads to the Cartesian representation expressed by coefficients of the
polar representation (here for x, similar for y):

x′ = x

n∑
i=0

i even

n∑
j=i

j even

i∑
k=0

k even

j−k∑
l=0

l even

c
(x)
ij tik

(1
2
(j − k)

1
2
l

)
xk+lyj−k−l (141)

We now have to replace indices in a way that we can extract the bi-variate
monomials in the form xuyv with new indices u and v. In order to do this we will
have to change the order of summation several times. This is way less complicated
if we simplify summation ranges. Let us define tik = 0 for k > i. Then we can
replace

i∑
k=0

k even

→
n∑

k=0
k even

(142)

Also, let c
(x)
ij = 0 for i > j or j > n, which allows us to replace

n∑
j=i

j even

→
n∑

j=0
j even

(143)
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And third, let us define that binomial coefficients n over k are 0 if k > n or k < 0,
so that this replacement is possible:

j−k∑
l=0

l even

→
n∑

l=0
l even

(144)

Then we have

x′ = x

n∑
i=0

i even

n∑
j=0

j even

n∑
k=0

k even

n∑
l=0

l even

c
(x)
ij tik

(1
2
(j − k)

1
2
l

)
xk+lyj−k−l (145)

First we replace l by j − k − v and summate over v.

x′ = x

n∑
i=0

i even

n∑
j=0

j even

n∑
k=0

k even

n∑
v=0

v even

c
(x)
ij tik

( 1
2
(j − k)

1
2
(j − k − v)

)
xj−vyv (146)

Now we move the summation over j to the right (which we can do since the
summation ranges are not linked to each other), relabel j by u and shift it by v:

x′ = x
n∑

i=0
i even

n∑
k=0

k even

n∑
v=0

v even

n∑
u=0

u even

c
(x)
i,u+vtik

(1
2
(u+ v − k)
1
2
(u− k)

)
xuyv (147)

We move the summations over u and v to front and extract c(x), x and y:

x′ = x
n∑

v=0
v even

n∑
u=0

u even

xuyv
n∑

i=0
i even

c
(x)
i,u+v

n∑
k=0

k even

tik

(1
2
(u+ v − k)
1
2
(u− k)

)
(148)

Summations three and four will now generate the coefficients auv we are looking
for. We can restrict our sums that we do not have to rely on our zero-extensions
for t, c(x) and the binomial coefficients:

x′ = x

n∑
v=0

v even

n−v∑
u=0

u even

xuyv
u+v∑
i=0

i even

c
(x)
i,u+v

min(i,u)∑
k=0

k even

tik

(1
2
(u+ v − k)
1
2
(u− k)

)
(149)

The inner sum can be evaluated e.g. by some simple python program for each
triple of indices u, v and i. We have verified that the coefficients to the monomials
coincide with (50).
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7 List of symbols

˜ Tilde, for marking quantities after reparametrization
atan(y, x) Arcus tangens for entire x-y-plane
bbs Bending value of beam splitter
c2, c4 Coefficients for the radial models

c
(x)
ij , c

(y)
ij Coefficients of anamorphic models in polar coordinates

ganam Polynomial for anamorphic models
grad,dec Polynomial for radial models with decentering
hφbs,bbs(x, y) Beam splitter extender
Hφbs,bbs Matrix representation of the beam splitter extender

Ĵ(x, y) Jacobian matrix for plain polynomial models
J(x, y) Jacobian matrix
negx(x, y), negy(x, y) Negation as functions
φ(x, y) Mapping from unit- to dn-coordinates
φbs Rotation angle of beam splitter
φmnt Lens rotation for anamorphic models
rflx(x, y), rfly(x, y) Flip operations in unit-coordinates
rfb,cm “Radius” of filmback, distance filmback center to corner
rotφmnt Rotation extender for anamorphic models
rpa Pixel aspect ratio
ρ Ratio of filmback radius’ in reparametrization
srscl Rescale value for the rescaled anamorphic model
sx, sy Squeeze values in anamorphic models
sqxq(x, y), sqyq(x, y) Squeeze extenders for anamorphic models

S
(x)
q , S

(y)
q Matrix representation of squeeze extenders

Ti i-th Chebyshev polynomial of first kind
tik Coefficient for monomial xk of Ti(x)
u2, u4 Coefficients for horizontal decentering in radial models
v2, v4 Coefficients for vertical decentering in radial models
wfb,cm, hfb,cm Virtual filmback size in length units
wfb,cm,phys, hfb,cm,phys Physical filmback size in length units
x, y Distorted point position
xcm, ycm Point position in length units
xunit, yunit Point position in unit coordinates
xdn, ydn Point position in diagonally normalized coordinates
x′, y′ Undistorted point position
xlc,cm, ylc,cm Lens center in length units
xlco,cm, ylco,cm Lens center offset in length units
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