
Lens Distortion in 3DE4

Science-D-Visions

December 11, 2013

Contents

0 About this document 3
0.1 How to avoid reading all this . 3
0.2 Versions of this document . 3

1 The Lens Distortion Plugin Kit (LDPK) 4
1.0 Versions of the LDPK . 4
1.1 What you need . 4
1.2 Installing the LDPK . 4
1.3 Content of the LDPK . 5
1.4 Scripts . 6

2 Math 6
2.1 Notation . 6
2.2 Definitions . 7
2.3 Inverting the distortion function . 8
2.4 A zoo of lens distortion models . 8

2.4.1 Coordinate systems . 9
2.4.1.1 Camera coordinates 9
2.4.1.2 Unit coordinates . 10
2.4.1.3 Diagonally normalized coordinates 11

2.4.2 Decentering . 11
2.4.3 3DE Classic LD Model . 11
2.4.4 Anamorphic, Degree 6 . 12
2.4.5 Anamorphic - Standard, Degree 4 12
2.4.6 Radial - Fisheye, Degree 8 . 13
2.4.7 Radial - Standard, Degree 4 13

3 Implementation 14
3.1 General remarks . 14
3.2 The Lens Distortion Plugin Concept 14

3.2.1 The API . 15
3.2.1.1 Model and parameter identifiers 15
3.2.1.2 Parameter types and values 15
3.2.1.3 Modifying parameter values 16
3.2.1.4 Preparing the model 16
3.2.1.5 Jacobi-Matrix . 17
3.2.1.6 Remove and apply lens distortion 17

3.3 Building a compositing node . 17
3.3.1 Classes . 17
3.3.2 Unit coordinates and pixel coordinates 18
3.3.3 Removing and applying lens distortion 19

1

3.3.4 Resize and reapply . 19
3.3.4.1 Resize . 20
3.3.4.2 Reapply . 20

A Table of symbols 21

2

0 About this document

0.1 How to avoid reading all this

The document contains a lot of details which you do not need for developing at
least a plugin with basic functionality, which means, 3DE4’s core will be able to
use it for calculations. In principle, all you need is the base class tde4 ld plugin

which is located in

$LDPK/include/ldpk/tde4_ld_plugin.h

The header file is quite self-explanatory. You derive your own 3DE4-plugin class
from this base class. Your derived class then contains:

• Handling for the seven built-in parameters

• Handling for your model-dependent parameters

• A method undistort()

• A method distort()

Apart from that you need C-style create- and destroy-functions in the global names-
pace. Please copy them from

$LDPK/source/ldpk/tde4_ldp_example_radial_deg_8.C

and insert the name of your plugin class in the create-function. Also, please keep
in mind:

• Your plugin must be thread-safe. In 3DE4 and some compositing systems,
many instances of your plugin class will be created, one per thread. One
instance is used by one thread only.

• Get your coordinate systems right and take into account lens center offset
properly.

• 3DE4 will invoke undistort() pretty often, so this method should be fast.

After compiling, please move your shared object to

$TDE/user_data/ld_plugins/

and start 3DE4. Your plugin should appear in 3DE4’s Attribute Editor. In order
to develop a compositing node, please follow the instructions of the compositing
system’s development kit, create a node class and either implement the mathematics
from scratch or use the plugin class you wrote a minute ago. Also, keep in mind:

• An image is undistorted using the method distort()!

• An image is distorted using the method undistort()!

0.2 Versions of this document

If you have questions about this document, the math, the implementation or the
software licence, please contact uwe@sci-d-vis.com. Bug reports are welcome!

Version 1.5 2013—— In preparation
Version 1.4 2013-04-25 Removed obsolete section about derivatives
Version 1.3 2012-06-29 None
Version 1.2 2012-02-02 Added parameter tde4 custom focus distance cm

Version 1.1 2011-09-05 Minor corrections
Jacobi-matrix of the classic model

Version 1.0 2011-02-16 LDPK; Math; Implementation

3

mailto:uwe@sci-d-vis.com

1 The Lens Distortion Plugin Kit (LDPK)

The LDPK is meant to make it easier for you to develop a lens distortion plugin,
either for 3DE4, or for your favourite compositing system. We tried to make it as
little intrusive as possible. For 3DE4 there is only a single base class you have to
use.

1.0 Versions of the LDPK

Version 1.7 not yet Bounding Box methods in $LDPKldp builtin

New Nuke plugins (easier to install and to use)
Version 1.6 2013-11-12 Python bindings for the built-in models

Bugfix for string-valued parameters
Pre-compiled libraries, modules, plugins

Version 1.5 2013-09-16 Bugfixes, check for undefined built-in parameters
Version 1.4 2013-04-25 New model Anamorphic-Standard-Degree-4 and modified

Radial-Standard-Degree-4 (beam-splitter compensation)
Version 1.3 2012-06-29 The Radial-Degree-8-Model compensates for equisolid-angle

fisheye distortion
Version 1.2 2012-02-02 Added parameter tde4 custom focus distance cm

Version 1.1 2011-04-16 Minor corrections in Doxygen doc
Simplified $LDPK/classic 3de mixed distortion

Base class for built-in plugin classes
Thread-safety of the distort-method (lookup-tables)
Helper classes now form a library libldpk.a

Version 1.0 2011-02-16

1.1 What you need

In order to use the LDPK you need the following:

• One of the following operating systems:

– Mac OSX 10.x 64bit

– Linux 64bit

• g++, the gnu c++ compiler, version 4.x.x (must have)

• a browser for reading the class documentation (should have)

• /bin/csh called “C shell” (should have)

• gnuplot for visualizing (nice to have)

1.2 Installing the LDPK

The LDPK is delivered as a tar-archive. In order to install it please go to the
directory, where you would like to place the LDPK, copy the tar-archive there and
invoke

tar xfz ldpk-xxx.tgz

on the command line. LDPK will unpack into a directory named ldpk-xxx, where
xxx stands for some version number. In this document, we will refer to the base
directory of the unfolded tar-archive as $LDPK.

4

1.3 Content of the LDPK

The LDPK contains the following directories:

• bin - precompiled binaries for testing the plugin on various platforms. Com-
piled test programs will be placed here. Once you have implemented and
compiled your plugin you can quickly check it by running one of the following
programs:

– tde4 plugin info.linux

– tde4 plugin info.osx

After running the compile script, you will find some more tools here:

– test plugin loader - Another simple test program for loading a plugin.
You simply run the program and pass the abolute or relative path to your
plugin shared object. The program will write some information about
the plugin to stdout and exit.

– test model visualizer - A program which generates gnuplot data for
plotting a vector field from a parameter specification file. We will have
a look at this tool later, when we discuss how to implement a plugin for
3DE4.

• doc - Doxygen and pdf documents, including this one. The entry point
for the Doxygen documents is file:///$LDPK/doc/doxy/html/index.html.
The pdf-document you are currently reading is located in $LDPK/doc/tex/.

• include - header files. The best way to explore these is to read the Doxy-
gen documentation, starting at file:///$LDPK/doc/doxy/html/index.html
If you plan to implement a compositing node for 3DE4’s built-in distortion
models, please have a look at these classes. The distortion classes contain
reference implementations for all built-in models of 3DE4.

– ldpk::radial decentered distortion

– ldpk::generic radial distortion

– ldpk::generic anamorphic distortion

– ldpk::classic 3de mixed distortion

– tde4 ldp radial decentered deg 4

– tde4 ldp radial deg 8

– tde4 ldp anamorphic deg 6

– tde4 ldp classic 3de mixed

• lib - a place for libraries. When you run the compile script, any libraries to
be generated are placed here.

• script - scripts for compiling and cleaning up. The scripts are:

– makeall.csh - A script for compiling examples and test programs.

– cleanup.csh - Remove all files created by makeall.csh

• source - source code for classes

• test - source code for test programs, see bin/.

5

1.4 Scripts

All test programs and example plugins are compiled by running $LDPK/script/makeall.csh.
The script $LDPK/script/cleanup.csh is used to reset the directory content of
$LDPK to its original state. The script $LDPK/script/makedoc.csh (which you
probably don’t need) is used for creating the Doxygen documents. When you have
compiled everything you can do a first test by the following commands. This pro-
gram generates table data for gnuplot by evaluating the plugin passed and using
the model parameters given by some parameter file:

unix> cd $LDPK

unix> bin/test_model_visualizer lib/tde4_ldp_example_radial_deg_8.so\

test/para_example_radial_deg_8.data /tmp/outgp.data

unix> gnuplot

gnuplot> plot ’/tmp/outgp.data’ with vector

The result is a vector field representation of a radial distortion model.

2 Math

In the following, we will specify in mathematical notation what we understand by
a distortion model in the context of 3DE4. By intuition, you will already know
most of what we present here, if you want to implement a lens distortion plugin or
compositing node. Concerning plugins for 3DE4, it is important however to get a
concept of linear distortion models, which we explain in this section.

2.1 Notation

Given two functions f : X → X ′ and g : Y → Y ′ where f(X) ⊂ Y we compose
them by writing

g ◦ f (1)

which maps x to g(f(x)). We denote the n-dimensional space by R
n. The com-

ponents of a tuple p ∈ R
n are pi where i ∈ {0, . . . , n − 1}. Generally, we use latin

indices in order to describe points in parameter spaces.
Images are defined on a two-dimensional subspace of R

2. Points and vectors in
images space are tuples (x, y). We describe them using an index notation as follows:

• For any point p in R
2 we refer to the components of p by writing pµ, where

µ = 0 and µ = 1 address the x- and y-component of p, respectively.

• A function g mapping to R
2 is decomposed in x- and y-component in the same

way: gµ(. . .) or g(. . .)µ.

• The derivative of a function g mapping from R
2 is written as

∂

∂pµ
g(p) (2)

We use greek indices µ, ν . . . for the special case of components of tuples in an image
space. The euclidian norm of a tuple p in n dimensions is denoted by

|p| =

√

√

√

√

n−1
∑

i=0

p2i (3)

6

2.2 Definitions

We do not specify explicitly the continuity class of functions in order to not over-
burden this section. Usually distortion functions are quite reasonable as far as
continuity and differentiability are concerned. For completeness, let us assume that
all functions are at least two times continuously differentiable.

Definition 2.2.1. Let P and Q be (reasonable) subsets of R2, i.e. they are con-
nected submanifolds of R

2. Let C be a connected submanifold of R
n for some

number n. We call C the parameter space and the elements of C parameter sets.
We consider a smooth mapping

g : P × C → Q (4)

For any given parameter set c ∈ C we define the function gc by

gc : P → Q : p 7→ g(p, c) (5)

We call g a distortion model with n parameters, if it has the following properties:

1. Fixed point - There is a point p0 = (x0, y0) ∈ P so that for all c ∈ C

g(p0, c) = p0 (6)

i.e. for any c ∈ C, p0 is a fixed point of gc. We call p0 the lens center.

2. Default parameters - There is a parameter set c0 ∈ C, so that for all p ∈ P

g(p, c0) = p (7)

i.e. gc0 is the identity map on P .

3. Invertibility - gc is invertible, i.e. there is a mapping

g−1c : Q→ P (8)

so that
g−1c ◦ gc = id|P (9)

This tells us more about P and Q than the distortion model itself. We simply
demand, that the distortion model has an inverse, when we need it.

Remark. For any lens distortion model we can define a parameter set c0 as default
values, if gc is the identity map, which is important for 3DE4’s plugin concept.

Definition 2.2.2. Let g : P × C → Q be a lens distortion model with fixed point
pfix. Let Tp be the translation operator Tp : R2 → R

2 which maps x to x + p. We
define a shifted distortion model ĝ by:

ĝc = T−1pfix
◦ gc ◦ Tpfix

(10)

where ĝc maps from P −x to Q−x. The following proposition tells us, that we can
simply consider lens distortion models around (0, 0), as long as we define them as
in this section. This simplifies our notation and allows us to separate mathematics
from 3DE4-things when we implement a plugin.

Proposition 2.2.1. ĝ is a distortion model.

7

Proof. This is easy to see. We check the four items from our definition.

1. The fixed point of ĝc is (0, 0).

2. If c0 is the default parameter set, then

ĝc0 = T−1pfix
◦ gc0 ◦ Tpfix

= T−1pfix
◦ id|

R2 ◦ Tpfix
= T−1pfix

◦ Tpfix
= id|

R2 (11)

3. Since gc : P → Q and Tpfix
are invertible, ĝc : P − x → Q− x is invertible as

well.

2.3 Inverting the distortion function

For a given distortion function gc : P → Q we have to find a way of computing the
inverse. Let us assume gc is a distortion function for removing lens distortion, then
we also need (e.g. for image processing) the inverse distortion function. For any
given point q ∈ Q we wish to find the point p ∈ P so that gc(p) = q. This can be
done as follows using Newton’s method. First, we define a function

F (p) = gc(p)− q (12)

Finding the inverse of q is equivalent to find the zero point of F . Starting at some
initial value p(0) we iterate

p(k+1) = p(k) − J−1(p)F (p(k)) (13)

where

Jµν(p) =
∂

∂pν
Fµ(p) =

∂

∂pν
gc(p)µ (14)

is the Jacobi-matrix of F at p, until
∣

∣

∣
p(k+1) − p(k)

∣

∣

∣
< ǫ (15)

for some1 pre-defined ǫ. The algorithm will converge if p(0) is close to g−1c (q). A
good choice for the initial value, if no other information is available, is

p(0) = q − (gc(q)− q) = 2q − gc(q) (16)

The idea is the following: We assume that gc(p) depends smoothly on p and varies
slowly. That means gc(q) − q is not so far away from g−1c (gc(q)) − g−1c (q) which
is q − p. Then p hopefully is not so far from 2q − gc(q). Results are not bad for
this initial value. Yet, even with this choice of initial values, there are situations
in practice, where Newton’s method does not converge. For this reason it makes
sense to generate lookup tables. This is explained in section 3.

2.4 A zoo of lens distortion models

In this section, we present the math of 3DE4’s built-in distortion models. In the
following subsections, we will call the undistorted point

q = (x′, y′), (17)

while the distorted point is
p = (x, y). (18)

1We do not work out the details here. Just some sort of termination criterion. . .

8

Figure 1: Camera pyramid and lens center

All models express by which prescription the undistorted point is computed from
the distorted point. In all models we have chosen the coordinates in a way, so that
the lens center is (0, 0) and that the diameter of the image is 2 (i.e. diagonally
normalized coordinates). Some of the models are represented in polar coordinates:

r = |p| =
√

x2 + y2

φ = arctan(y, x) (19)

where we use arctan(·, ·) as math symbol for double atan2(double y,double x)

(see manpage man atan2). For most of the built-in distortion models we show the
Jacobi-matrix. The built-in models use this in order to compute the inverse of the
distortion function (see section 2.3 for details). The advantage of implementing the
Jacobi-matrix instead of relying on difference quotients is a higher performance by
a factor 2 to maybe 3.

2.4.1 Coordinate systems

We will have to deal with several coordinate systems, which we describe in the
following. Real measure coordinates are helpful because in 3DE4 the camera is
specified by means of real measure quantities, including filmback width, filmback
height, lens center offset and focal length. Unit coordinates are helpful, because they
represent a resolution independent, camera-scaling invariant way to specify the lens
distortion plugin API. Tracking data in 3DE4 are stored in unit coordinates. For
our lens distortion models we need isometric, unit-free coordinates, which are called
diagonally normalized coordinates. In this section we describe, how these systems
are related to each other.

2.4.1.1 Camera coordinates Camera coordinates are real measure coordi-
nates on the projection plane of a camera placed in the origin of three-dimensional
space. The projection plane is located at z = −fcm, where fcm is the focal length in

9

cm (see fig. 1). The lens center in these coordinates is (0, 0), lower left and upper
right corners are

(−
wfb,cm

2
,−

hfb,cm

2
) (20)

and

(+
wfb,cm

2
,+

hfb,cm

2
), (21)

respectively.

2.4.1.2 Unit coordinates Unit coordinates are important because we use them
for defining the API of our lens distortion plugins. They are defined as shown in
fig. 2. We define the domain of the image as I × I with I = [0, 1], where (0, 0)
is the lower left corner and (1, 1) is the upper right corner. The center of the
image is (12 ,

1
2). Unit coordinates are related to camera coordinates by the mapping

ψunit←cm:

xunit =
xcm

wfb,cm
+
xlco,cm

wfb,cm
+

1

2

yunit =
ycm

hfb,cm
+
ylco,cm

hfb,cm
+

1

2
. (22)

The inverse mapping ψcm←unit is

xcm =

(

xunit −
1

2

)

wfb,cm − xlco,cm

ycm =

(

yunit −
1

2

)

hfb,cm − ylco,cm. (23)

Fig. 2 illustrates the relationship between the two coordinate systems.

Figure 2: Camera coordinates and unit coordinates

10

2.4.1.3 Diagonally normalized coordinates Unit coordinates have the draw
back, that they are not isometric: a length value along x does not represent the
same length in real world measures as it does along y. Therefore, all our built-in
lens distortion models are defined in diagonally normalized coordinates. In
these units, the image has a diagonal diameter of 2. We use the following symbols
to convert to and from this system:

ψunit←dn :
xdn
ydn

7→
xunit
yunit

=
=

xdn
rfb,cm
wfb,cm

+
xlco,cm

wfb,cm
+ 1

2

ydn
rfb,cm
hfb,cm

+
ylco,cm

hfb,cm
+ 1

2

(24)

ψdn←unit :
xunit
yunit

7→
xdn
ydn

=
=

(

xunit −
1
2

) wfb,cm

rfb,cm
−

xlco,cm

rfb,cm
(

yunit −
1
2

) hfb,cm

rfb,cm
−

ylco,cm

rfb,cm

ψcm←dn :
xdn
ydn

7→
xcm
ycm

=
=

xdnrfb,cm
ydnrfb,cm

(25)

ψdn←cm :
xcm
ycm

7→
xdn
ydn

=
=

xcm

rfb,cm
ycm

rfb,cm

(26)

where we have defined the filmback radius by

rfb,cm =
1

2

√

w2
fb,cm + h2fb,cm (27)

2.4.2 Decentering

All lens systems suffer from certain mechanical inaccuracies. One of these inaccu-
racies is referred to in the literature as decentering. It means, that not all lenses in
the lens system are precisely centered on the optical axis. Up to a certain degree, all
built-in models we present in the following sections are able to account for decen-
tering, since lens center offset can be optimized for all models. However, only one
model is able to separate decentering effects from lens center offset, namely Radial

- Standard, Degree 4. This model is already used in production and we recommend
it for non-anamorphic lenses.

2.4.3 3DE Classic LD Model

This is the model which has been used in 3DE4 before the plugin concept was
realized. It combines degree-2 anamorphic terms and degree-4 radial terms. As
already mentioned, we use diagonally normalized coordinates in our lens distortion
models. We denote coefficients for the x-component and y-component by cx... and
cy..., respectively.

x′ = x(1 + cxxx
2 + cxyy

2 + cxxxx
4 + cxxyx

2y2 + cxyyy
4)

y′ = y(1 + cyxx
2 + cyyy

2 + cyxxx
4 + cyxyx

2y2 + cyyyy
4)

(28)

where the coefficients are represented by five parameters δ, ǫ, ηx, ηy, q:

cxx =
δ

ǫ
cxy =

δ + ηx

ǫ
cxxx =

q

ǫ
cxxy = 2

q

ǫ
cxyy =

q

ǫ

cyx = δ + ηy cyy = δ cyxx = q cyxy = 2q cyyy = q

(29)

The names of these parameters in 3DE4 are:

11

δ Distortion

ǫ Anamorphic Squeeze

ηx Curvature X

ηy Curvature Y

q Quartic Distortion

The reference implementation can be found in

$LDPK/include/ldpk/ldpk_classic_3de_mixed_distortion.h

The Jacobi-matrix is

J00 = 1 + 3cxxx
2 + cxyy

2 + 5cxxxx
4 + 3cxxyx

2y2 + cxyyy
4

J01 = 2cxyxy + 2cxxyx
3y + 4cxyyxy

3

J10 = 2cyxxy + 4cyxxx
3y + 2cyxyxy

3

J11 = 1 + cyxx
2 + 3cyyy

2 + cyxxx
4 + 3cyxyx

2y2 + 5cyyyy
4. (30)

Although this model is widely spread, we recommend to select either Anamorphic

- Standard, Degree 4 or Radial - Standard, Degree 4.

2.4.4 Anamorphic, Degree 6

The anamorphic model uses a lot of parameters, probably more than would be
necessary, to model anamorphic lenses when no decentering is involved. We split
g(p, c) into x- and y-component:

x′ = x(1 + cx02r
2 + cx04r

4 + cx06r
6

+ cx22r
2 cos 2φ + cx24r

4 cos 2φ + cx26r
6 cos 2φ

+ cx44r
4 cos 4φ + cx46r

6 cos 4φ

+ cx66r
6 cos 6φ)

y′ = y(1 + c
y
02r

2 + c
y
04r

4 + c
y
06r

6

+ c
y
22r

2 cos 2φ + c
y
24r

4 cos 2φ + c
y
26r

6 cos 2φ

+ c
y
44r

4 cos 4φ + c
y
46r

6 cos 4φ

+ c
y
66r

6 cos 6φ) (31)

An implementation of this model, which you can use for compositing plugins is in

$LDPK/include/ldpk/ldpk_generic_anamorphic_distortion.h

2.4.5 Anamorphic - Standard, Degree 4

The standard anamorphic model is a degree-4 anamorphic model with additional
parameters which allow modelling a slightly rotated anamorpic lens and scaling in
two directions. We shall discuss the details in a later version of this document. The
pure anamorphic part reads

x′ = x(1 + cx02r
2 + cx04r

4

+ cx22r
2 cos 2φ + cx24r

4 cos 2φ

+ cx44r
4 cos 4φ)

y′ = y(1 + c
y
02r

2 + c
y
04r

4

+ c
y
22r

2 cos 2φ + c
y
24r

4 cos 2φ

+ c
y
44r

4 cos 4φ) (32)

12

2.4.6 Radial - Fisheye, Degree 8

The current model for compensating fisheye distortion uses an equisolid-angle map-
ping function and an even-degree 8 polynomial. We’ll describe the details in a later
version of this document.

2.4.7 Radial - Standard, Degree 4

This model is a slight modification of the famous distortion model by Brown[1966]
and Conradi[1919]. It is a model for radially symmetric lenses which accounts for
slight decentering of lenses. In coordinates around the lens center, the model up to
and including including order five2 reads

x′ = x(1 + c2r
2 + c4r

4) +
[

t1(r
2 + 2x2) + 2t2xy

]

(1 + t3r
2)

y′ = y(1 + c2r
2 + c4r

4) +
[

t2(r
2 + 2x2) + 2t1xy

]

(1 + t3r
2). (33)

As you see, this model is not linear in its coefficients, since t3 appears as a prod-
uct with t1 and t2. We have modified this model by introducing an additional
parameters in the following way. We define

u1 = t1 u3 = t3t1

v1 = t2 v3 = t3t2. (34)

Rewriting the original model by means of these four parameters leads to the linear
form (i.e. no products of coefficients)

x′ = x(1 + c2r
2 + c4r

4) + (r2 + 2x2)(u1 + u3r
2) + 2xy(v1 + v3r

2)

y′ = y(1 + c2r
2 + c4r

4) + (r2 + 2y2)(v1 + v3r
2) + 2xy(u1 + u3r

2). (35)

We have added two more parameters for compensating artefacts resulting from the
beam-splitter used in certain stereo rigs. We shall describe them in a later version
of this document.
In practice this means, we add one degree of freedom to the system, but in turn we
get a faster and more robust method for computing the coefficients. An implemen-
tation of this model, which you can use for compositing plugins is in

$LDPK/include/ldpk/ldpk_radial_decentered_distortion.h}

The Jacobi-matrix Jµν (without compensating for beam-splitter) is:

J00 = 1 + c2(y
2 + 3x2) + c4(y

2 + 5x2)r2

+ 6u1x+ u3(8xy
2 + 12x3) + 2v1y + v3(2y

3 + 6x2y)

J01 = 2c2xy + 4c4xyr
2

+ 2u1y + u3(8x
2y + 4y3) + 2v1x+ v3(2x

3 + 6xy2)

J10 = 2c2xy + 4c4xyr
2

+ 2u1y + u3(6x
2y + 2y3) + 2v1x+ v3(4x

3 + 8xy2)

J11 = 1 + c2(x
2 + 3y2) + c4(x

2 + 5y2)r2

+ 6v1y + v3(8x
2y + 12y3) + 2u1x+ u3(2x

3 + 6xy2). (36)

2Our nomenclature “Degree 4” refers to the power of r at c4

13

3 Implementation

3.1 General remarks

On a low technical level, removing lens distortion is done in two ways for two
different purposes:

• We would like to remove distortion for a given set of point positions. These
point positions can be e.g. feature points from tracking or image analysis.

• On the other hand we would like to remove distortion from pixel-based image
material. In this case we already know the target positions, i.e. the position
of all pixels, but would like to know where a particular pixel originates from.

Let us consider a distortion function g, which maps a distorted point p to an undis-
torted point q. It’s inverse mapping is denoted by g−1 and maps q back to p. The
two situations are shown in fig. 3.

In this document we will always call g the distortion function and
g−1 the inverse distortion function.

For all distortion models, we postulate that the distortion function g shall be cal-
culated without recurse to any kind of initial value (i.e. non-iteratively), while the
inverse distortion function may be implemented as iterative function and require
initial values. This way of formulating the distortion function and its inverse is
widely spread in the literature, and it makes sense for the following reason: In
3DE4 we need fast, precise and robust access to undistorted tracking data without
initial values. For compositing nodes used for image processing, however, complete
images or large parts of an image have to be undistorted. This justifies the use of
a lookup table in order to calculate the inverse distortion function, and this makes
it easy to calculate functions based on initial values like g−1.

Figure 3: Mapping and inverse mapping

3.2 The Lens Distortion Plugin Concept

3DE4’s lens distortion plugin concept is built upon an abstract class tde4 ld plugin,
from which the developer of a plugin derives their own class. The resulting class is

14

compiled as shared object library and placed at /user data/ld plugins/ in 3DE4’s
installation directory.

3.2.1 The API

In the following, we will have a closer look at the plugin API. The header file
is called tde4 ld plugin.h. The class tde4 ld plugin is an abstract class and
therefore starts like this:

class tde4_ld_plugin

{

public:

virtual ~tde4_ld_plugin() {}

...

};

3.2.1.1 Model and parameter identifiers Each distortion model has a unique
name, and it will be identified by this name. The length of this name is restricted to
100 characters. The derived class provides this name by implementing the method
getModelName(). By default, each method has a boolean return value in order to
indicate an error while the method is called. A return value of true indicates, that
no error has occured.

...

virtual bool getModelName(char *model) = 0;

virtual bool getNumParameters(int &n) = 0;

virtual bool getParameterName(int i,

char *identifier) = 0;

...

Each model will have a number of parameters, which characterize the distortion
function. The number of parameters is obtained by calling getNumParameters().
Each parameter has a type and an identifier. Parameters are addressed by means of
their identifier in every method of the plugin class. The method getParameterName()
is used to get this identifier. Its length is restricted to 100 characters.

3.2.1.2 Parameter types and values Once we have the identifier of a param-
eter we can obtain its properties and control it. getParameterType() delivers the
type. The types are given by the following enum-declaration in tde4 ld plugin.h:

// parameter types...

enum tde4_ldp_ptype {

TDE4_LDP_STRING, TDE4_LDP_DOUBLE, TDE4_LDP_INT,

TDE4_LDP_FILE, TDE4_LDP_TOGGLE, TDE4_LDP_ADJUSTABLE_DOUBLE };

...

// returns type of given parameter...

virtual bool getParameterType(const char *identifier,

tde4_ldp_ptype &type) = 0;

...

In 3DE4’s user interface, the type of a parameter determines, how it is represented;
string parameters are represented by a single line text field, file parameters

15

have a button in order to open a file browser. double and adjustable double

parameters are represented as a floating point number. An adjustable parameter
can be calculated in 3DE4’s Matrix Tool or in the Parameter Adjustment Window.
The next four methods are used for obtaining the default value for each parameter.

virtual bool getParameterDefaultValue(const char *identifier,

double &v) = 0;

virtual bool getParameterDefaultValue(const char *identifier,

char *v);

virtual bool getParameterDefaultValue(const char *identifier,

int &v);

virtual bool getParameterDefaultValue(const char *identifier,

bool &v);

The following function makes sense for adjustable double parameters. By means
of this method 3DE4 will know the domain of definition of the parameter, which
plays a certain role in optimization. Although 3DE4’s Matrix Tool does not take
into account these values in the current implementation, a reasonable parameter
range is important for the Parameter Adjustment Window.

// returns range for adjustable double parameters...

virtual bool getParameterRange(const char *identifier,

double &a, double &b) = 0;

3.2.1.3 Modifying parameter values The following four methods are used
for setting the value of a parameter. There are seven pre-defined parameter names,
and every plugin class must be able to understand them. These parameters are focal
length, filmback width and height, lens center offset x and y, and pixel aspect. Since
each distortion model has double parameters (at least the seven mentioned before),
the method for double parameters is pure virtual, i.e. it must be implemented,
while the others are only virtual. If your model does not have int, toggle, string
or file parameters, you can simply ignore them.

// set parameter values...

// parameters predefined by 3DE4:

// ”tde4 focal length cm”, ”tde4 filmback width cm”, ”tde4 filmback height cm”,

// ”tde4 lens center offset x cm”, ”tde4 lens center offset y cm”, ”tde4 pixel aspect”,

// ”tde4 custom focus distance cm”

virtual bool setParameterValue(const char *identifier, double v) = 0;

virtual bool setParameterValue(const char *identifier, char *v)

{ return false; }

virtual bool setParameterValue(const char *identifier, int v)

{ return false; }

virtual bool setParameterValue(const char *identifier, bool v)

{ return false; }

3.2.1.4 Preparing the model The following method must be called, whenever
one or more parameters have been changed. Some distortion models may require
preparations when one or more parameters have been changed. These are done
within this method.

// prepare the current set of parameters...

virtual bool initializeParameters() = 0;

16

3.2.1.5 Jacobi-Matrix The following method calculates the Jacobi-Matrix by
means of difference quotients. If you know the analytic form of this matrix, please
implement this method in your derived class. We use this in order to generate
export data for compositing systems.

virtual bool getJacobianMatrix(double x0, double y0,

double &m00, double &m01, double &m10, double &m11) {...}

3.2.1.6 Remove and apply lens distortion Finally, there are three methods
which apply or remove lens distortion from a point. In 3DE4, we assume, that
removing distortion from a point is a simple function in the sense that it can be done
non-iteratively. At least, if it is done iteratively no initial values are required. All
built-in polynomial models of 3DE4 are constructed this way. On the other hand,
even the simplest polynomial models can only be inverted by using an iterative
function, which requires good initial values. Therefore, there is only one method
undistort(), while distort() comes in two flavours: one without initial values and
one that demands initial values. 3DE4 will use the initial value version whenever
possible. If your model does not need initial values for applying distortion, you
may simply ignore the second version of this method (see default implementation
below).

// warp/unwarp 2D points...

virtual bool undistort(double x0, double y0,

double &x1, double &y1) = 0;

virtual bool distort(double x0, double y0,

double &x1, double &y1) = 0;

virtual bool distort(double x0, double y0,

double x1_start, double y1_start,

double &x1, double &y1)

{ return(distort(x0,y0,x1,y1)); }

The point (x0, y0) passed to either of these methods as well as the resulting point
(x1, y1) are given/calculated in unit coordinates as described in section 2.4.1.2.

3.3 Building a compositing node

3.3.1 Classes

Let us assume, the compositing node is represented by some class NODE. In principle,
there are several ways to connect NODE to the distortion models.

1. Implement the mathematics from scratch in NODE.

2. Implement a distortion class, derived from ldpk::general distortion base

and use it as member in NODE.

3. Implement a complete 3DE4-plugin, based on tde4 ld plugin and use it as
member in NODE (or even load it dynamically!?).

The third method has the advantage, that once you have done this, it works
for all plugins, since the plugin base class enforces a common API for all distortion
models. In the following we will assume that in fact all warping and unwarping is
done by a plugin class within NODE. The plugin classes for all built-in models of
3DE4 are part of the LDPK.

17

Figure 4: Compositing node

3.3.2 Unit coordinates and pixel coordinates

In developing a compositing node, implementation details will depend on the spec-
ifications of the compositing system. But it is very likely, that we will have to deal
with some kind of pixel-based coordinate system, and for this case we should discuss
the transformation between unit coordinates as used in the LDPK plugin API and
pixel coordinates as used in image processing. For simplicity we shall assume, that
the origin of the pixel coordinates is the lower left pixel. The data in an image file
do not necessarily coincide with the image data relevant for processing. The situta-
tion may be as described in fig. 5 Filmback width and filmback height correspond to

Figure 5: Image file and image data

width and height of the subimage, not to width and height of the image file. When
we deal with pixel positions in the following, we always talk about pixel positions
with respect to the subimage. This is important, because otherwise distortion will
not be removed or applied correctly.
Let us assume the subimage of the image, that represents the filmback has a size of

wfb,px × hfb,px. (37)

A single pixel, like e.g. (0, 0) in the figure is some color information associated to

the center of a (by definition) square-shaped area. So, a pixel (xpx, ypx) is mapped
from unit coordinates (xunit, yunit) by the following mapping:

xpx = xunitwfb,px −
1

2

ypx = yunithfb,px −
1

2
(38)

18

The inverse mapping is:

xunit =
xpx +

1
2

wfb,px

yunit =
ypx +

1
2

hfb,px
. (39)

We denote the mapping from unit to pixel coordinates and its inverse by

ψpx←unit and ψunit←px (40)

3.3.3 Removing and applying lens distortion

Now, the aim of an image processor is to calculate the pixel (xpx, ypx) of the target
image. We would like to use the inverse distortion mapping g−1 in order to find
out, from which pixels the color at (xpx, ypx) has to be mixed, as already shown in
fig.3. In order to do this, we have to transform the inverse distortion function from
unit coordinates to pixel coordinates. Let g−1unit be the inverse distortion function in
unit coordinates, i.e. as defined in the LDPK plugin. Then the inverse distortion
function in pixel space is

g−1px = ψpx←unit ◦ g
−1
unit ◦ ψunit←px, (41)

or in words: map from pixel to unit coordinates, apply the inverse plugin distortion
function and map back to pixel coordinates. Similar, applying distortion to an
image in pixel space is done with

gpx = ψpx←unit ◦ gunit ◦ ψunit←px, (42)

When you implement an image processor, your pixel positions (xpx, ypx) will proba-
bly be pairs of integer values. The result after applying g−1px however will in general
be a pair of real numbers, the non-integer part of which is used to interpolate be-
tween neighbouring pixels in the original image. This is most likely done by the
compositing system you are writing the node for.

3.3.4 Resize and reapply

In warp4, SDV’s image processing tool, several modes for removing or applying lens
distortion are available. If you implement a compositing node, it might be helpful
to describe, how these modes are implemented. A workflow which is occasionally
asked for by users is the following:

1. Given a sequence of original, distorted images, warp4 is used to remove dis-
tortion.

2. The undistorted sequence is used in compositing.

3. warp4 is then used to re-apply distortion.

If this is done without modifying the size of the image, undefined (i.e. black) areas
occur at the edge of the image, because removing lens distortion usually magnifies

the image content3. Then some parts of the content are lost. Therefore warp4 is
able to resize the image while removing distortion. In the following, we describe
how this is done.

19

Figure 6: Resize and reapply, details

3.3.4.1 Resize Fig. 5 shows the original content (dark green area). Now, we
imagine that removing distorion required some additional space (light green area).
The outer box, i.e. the resized area is determined by two conditions:

1. The undistorted content is inside the resized area.

2. The lens center is exactly the center of the resize area.

The first of these conditions is clear: we do not want to lose any image content.
The second condition has more technical reasons: after removing lens distortion we
do not know the position of lens center with respect to the resized image. Therefore
we place it at a special position, namely the image center.

Figure 7: Resize and reapply in warp4

3.3.4.2 Reapply After removing lens distortion with resizing we have a new
image with size wresize,px × hresize,px. Since we defined a distortion function as
invertible, it should be possible to retrieve the original image. The problem is:
expressed in real length units, our resized image has a different filmback. A dis-
tortion function for retrieving the original image would have completely different
parameters. The solution is to redefine the pixel-based coordinate system. For our
example in fig. 6 this means, instead of pixel coordinates [0,0] to [15,9] we use pixel
coordinates [-1,-1] to [14,8]. By doing so, we can avoid dealing with the (unreal)
filmback of the resized image, and we do not need to keep track of the lens center.
The reason for us to handle resizing and reapplying like this is more or less induced

3More precise, in a small area around lens center the image remains unchanged, while towards

the edge it is stretched.

20

by warp4. You may handle this according to your needs in a different way for your
compositing node.

A Table of symbols

δµν delta Kronecker-delta
a · b dot Inner product of two vectors
a⊗ b dyadic Dyadic product of two vectors
fcm Focal length in centimeter
gpx Distortion function for pixel coordinates (compositing)
gunit Distortion function for unit coordinates (plugin API)
I Unit interval [0,1]
|· · · | norm Euclidian norm of a vector
ψunit←cm psi Eq. (22) Map from centimeter to unit coordinates
ψcm←unit psi Eq. (23) Map from unit coordinates to centimeter
ψunit←dn psi Eq. (24) Map from diag norm to unit coordinates
ψdn←unit psi Eq. (25) Map from unit to diag norm coordinates
ψdn←cm psi Eq. (26) Map from centimeter to diag-norm coordinates
ψcm←dn psi Eq. (25) Map from diag-norm coordinates to centimeter
ψpx←unit psi Eq. (38) Map from unit coordinates to pixel coordinates
ψunit←px psi Eq. (39) Map from pixel coordinates to unit coordinates
R The real numbers
R

n The space of real-valued n-tuples
rfb,cm Filmback diagonal radius in centimeter
rpa Pixel aspect (ratio)
wfb,cm,hfb,cm Filmback width and height in centimeter
wfb,px,hfb,px Filmback width and height in pixel
wresize,px,hresize,px Resized filmback width and height in pixel
xlco,cm, ylco,cm Lens center offset in centimeter
xlco,unit, ylco,unit Lens center offset in unit coordinates
xcm, ycm A point in centimeter
xdn, ydn A point in diagonally normalized coordinates
xpx, ypx A point in pixel coordinates
xunit, yunit A point in unit coordinates

References

[1] Bernhard Haumacher: svg2office, http://www.haumacher.de/svg-import/,
last verified: 2011-02-21

21

	About this document
	How to avoid reading all this
	Versions of this document

	The Lens Distortion Plugin Kit (LDPK)
	Versions of the LDPK
	What you need
	Installing the LDPK
	Content of the LDPK
	Scripts

	Math
	Notation
	Definitions
	Inverting the distortion function
	A zoo of lens distortion models
	Coordinate systems
	Camera coordinates
	Unit coordinates
	Diagonally normalized coordinates

	Decentering
	3DE Classic LD Model
	Anamorphic, Degree 6
	Anamorphic - Standard, Degree 4
	Radial - Fisheye, Degree 8
	Radial - Standard, Degree 4

	Implementation
	General remarks
	The Lens Distortion Plugin Concept
	The API
	Model and parameter identifiers
	Parameter types and values
	Modifying parameter values
	Preparing the model
	Jacobi-Matrix
	Remove and apply lens distortion

	Building a compositing node
	Classes
	Unit coordinates and pixel coordinates
	Removing and applying lens distortion
	Resize and reapply
	Resize
	Reapply

	Table of symbols

